

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE								
QUALIFICATION CODE: 07BOSC	LEVEL: 6							
COURSE CODE: ICH602S	COURSE NAME: INORGANIC CHEMISTRY							
SESSION: JANUARY 2023	PAPER: THEORY							
DURATION: 3 HOURS	MARKS: 100							

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER									
EXAMINER(S)	DR. EUODIA HESS								
MODERATOR:	PROF HABAUKA KWAAMBWA								

INSTRUCTIONS								
1. Answer ALL the questions.								
2. Write clearly and neatly.								
3. Number the answers clearly								
4. All written work must be done in blue or black ink and sketches can								
be done in pencil								
5. No books, notes and other additional aids are allowed								

PERMISSABLE MATERIALS

Non-programmable calculators

ATTACHMENTS

- 1. List of useful constants
- 2. Periodic Table

THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page, list of useful constants and Periodic Table)

- There are 20 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another
 possible answer that is not given.
- 1. What are oxidation states of metal ion in following complexes?
 - A. PdCl₂
 - B. Pd(PPh₃)₄
 - C. Pd(OAc)₂
 - D. ArPdBr where Ar is aryl
- 2. Which of the following complex has a highest oxidation state of metal?
 - A. $(\eta^6 C_6 H_6)_2 Cr$
 - B. Mn(CO)₅C
 - C. Na₂[Fe(CO)₄]
 - D. K[Mn(CO)₅]
- 3. What is the oxidation state of molybdenum in $[\eta^7$ -tropylium) Mo(CO)₃]⁺?
 - A. +2
 - B. +1
 - C. 0
 - D. -1
- 4. Which of the following is the neutral complex which follows the 18- electron rule?
 - A. $(\eta^5 C_5 H_5) Fe(CO)_2$
 - B. $(\eta^5 C_5 H_5) 2 Mo(CO)$
 - C. $(\eta^5-C_5H_5)_2Co$
 - D. $(\eta^5-C_5H_5)2Re(\eta^6-C_6H_6)$
- 5. As pure molecular solids, which of the following exhibits dipole-dipole intermolecular forces: HBr, NBr₃, SBr₂, and CBr₄?
 - A. HBr only
 - B. CBr₄ and NBr₃
 - C. HBr and SBr₂
 - D. HBr, NBr₃, and SBr₂

6.	Which of the following molecules is expected to form hydrogen bonds in the pure liquid or solid phase: ethanol (CH ₃ CH ₂ OH), acetic acid (CH ₃ CO ₂ H), acetaldehyde (CH ₃ CHO), and dimethyl ether (CH ₃ OCH ₃)? A. ethanol only B. acetaldehyde only C. ethanol and acetic acid D. dimethyl ether and ethanol	
7.	When a water molecule forms a hydrogen bond with another water molecule, which atorare involved in the interaction? A. a hydrogen from one molecule and a hydrogen from the other molecule B. an oxygen from one molecule and an oxygen from the other molecule C. a hydrogen from one molecule and an oxygen from the other molecule D. an oxygen and a hydrogen from the same molecule	ns
8.	Arrange H ₂ S, H ₂ Se, and H ₂ Te in order from lowest to highest boiling point. A. HF < HCl < HBr B. HF < HBr < HCl C. HCl < HBr < HF D. HBr < HF < HCl	
9.	n any cubic lattice an atom lying at the face of a unit cell is shared equally by how many unit cells? A. 2 B. 1 C. 4 D. 8	
10.	Arrange the three common unit cells in order from least dense to most dense packing. A. primitive cubic < body-centered cubic < face-centered cubic B. face-centered cubic < body-centered cubic < primitive cubic C. primitive cubic < face-centered cubic < body-centered cubic D. body-centered cubic < primitive cubic < face-centered cubic	
11.	f a metal crystallizes in a body-centered cubic lattice, each metal atom has " nearest neighbors." A. 8 B. 6 C. 4 D. 2	

- 12. What is the distance, in atomic radii, along any edge of a body-centered cubic unit cell?
 - A. $(4 \times r) / \sqrt{3}$
 - B. 2xr
 - C. 4xr
 - D. $(2 \times r) / \sqrt{3}$
- 13. Nickel has a face-centered cubic cell, and its density is 8.90 g/cm³. What is the radius (in pm) of a nickel atom?
 - A. 62.3 pm
 - B. 88.1 pm
 - C. 125 pm
 - D. 249 pm
- 14. Rhodium crystallizes in a face-centered cubic lattice with an edge length of 380.1 pm. What is the density of rhodium?
 - A. 0.777 g/cm^3
 - B. $3.11 \, \text{g/cm}^3$
 - C. 12.4 g/cm^3
 - D. 6.22 g/cm³
- 15. Iridium (atomic mass 192.2 g/mol), with an atomic radius of 135.5 pm, crystallizes in a face-centered cubic lattice. What is the density of iridium?
 - A. 1.41 g/cm³
 - B. 2.83 g/cm³
 - C. 5.66 g/cm^3
 - D. 11.3 g/cm^3
- 16. Iron crystallizes in the body-centered cubic system. If the edge of the unit cell is 290 pm, what is the radius of a iron atom in picometers?
 - A. 504 pm
 - B. 402 pm
 - C. 672 pm
 - D. 126 pm
- 17. Which of the following statements concerning valence bond (VB) theory is/are CORRECT?
 - A. VB theory can describe molecular bonding in excited states
 - B. VB theory assumes that electrons are localized between pairs of atoms
 - C. VB theory predicts localized lone pairs of electrons
 - D. A and B
- 18. How many sigma (σ) bonds and pi (π) bonds are in carbon monoxide?
 - A. three σ , zero π
 - B. two σ , one π
 - C. two σ , two π
 - D. one σ , two π

 19. To form a molecule with a tetrahedral electron pair geometry, what set of pure orbitals must be mixed? A. one s and two p B. one s and three p C. two s and one p D. one s and one p 	e atomic
20. What is the hybridization of the central nitrogen atom in N_2O ? A. sp^2 B. sp^3	
C. sp D. None of the above	
SECTION B:	[60]
There are THREE (3) questions in this section. Answer all Questions. Show clearly, where necessary, how you arrive at the answer as the working will carry	marks to.
Question 1 1.1 Specify the oxidation number of the central metal atom in each of the following	[30]
compounds: a) [Ru(NH ₃) ₅ (H ₂ O)]Cl ₂ b) [Cr(NH ₃) ₆](NO ₃) ₃ c) [Fe(CO) ₅] d) K ₄ [Fe(CN) ₆]	(10)
e) [PtCl ₆] ²⁻ 1.2 What are the systematic names for the following ion and compounds? a) [cis-Co(en) ₂ Cl ₂] ⁺ b) [Pt(NH ₃) ₅ Cl]Cl ₃ c) [Co(NH ₃) ₅ Cl]Cl ₂ d) [Cr(en) ₃]Cl ₂ e) NaAuF ₄	(10)
1.3 Write the formulas for the following compounds: a) bis(ethylenediamine)dichlorochromium(III) b) pentacarbonyliron(0) c) potassium tetracyanocuprate(II) d) tetraammineaquachlorocobalt(III)chloride e) sodium hexanitrocobaltate(III)	(10)

Question 2	[20]
2.1 What kind of intermolecular/attractive forces must be overcome to in order to:a) melt ice	(3)
b) boil molecular bromine c) melt solid iodine	
2.2 Calculate the number of spheres (atoms per unit cell) that would be found within a simple cubic, a body and a face-centered cubic cell? Assume the spheres are the same.	(6)
2.3 When silver crystallizes, it forms face-centered cubic cells. The unit cell edge length is 409 pm. Calculate the density of silver.	(8)
2.4 What are the different types of crystalline structures (crystals)?	(3)
Question 3	[10]
3.1 Do [IrBr ₂ (CH ₃)(CO)(PPh3)] and [Cr(η^5 -C ₅ H ₅)(C ₆ H ₆)] obey 18-electron rule? Show your working.	(6)
3.2 Give the formal names of ferrocene and [RhMe(PMe ₃) ₄]	(4)

END OF EXAMINATION

USEFUL CONSTANTS:

Gas constant, R = $8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.083145 \text{ dm}^{3} \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L atm mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L}$

 $1 \text{ Pa} \cdot \text{m}^3 = 1 \text{ kPa.L} = 1 \text{ N} \cdot \text{m} = 1 \text{ J}$

1 atm = 101 325 Pa = 760 mmHg = 760 torr

Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Rydberg constant, $R_h = 2.18 \times 10^{-18} \text{ J}$

Speed of light, $c = 2.998 \times 10^8 \text{ ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1																1	18
1																	2
H 1.00794	2											13	14	15	16	17	He 4.00260
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898		3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co.	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42		112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os		78 Pt		80		82 Pb	83 Bi	84 Po	85 A t	86 Rn
	Ba		Hf		W		-	77		79	80 Hg	81			Po		
Cs	Ba	Lu	Hf	Ta	W	Re	Os	77 Ir	Pt	79 Au	80 Hg	81 Tl	Pb	Bi	Po	At	Rn
Cs 132.905	Ba 137.33	Lu 174.967	Hf 178.49	Ta 180.948	W 183.85	Re 186.207	Os 190.2	77 Ir 192.22	Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl	Pb 207.2	Bi	Po (209)	At	Rn (222)

Lanthanides:	57	58	59	60	61	62	63	64	65	66	67	68	69	70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	161.930	167.26	166.934	173.04

100 102 89 90 91 92 93 94 95 96 97 98 101 Actinides: Ac Th Pa U Np Pu 227.028 232.038 231.036 238.029 237.048 (244) Pa Md Am (243) Bk Cf Fm No Cm Es (247)(247)(251) (252)(257)(258)(259)